چگونگی تشخیص چرخۀ حیات فناوری در حوزۀ آندوسکوپی بر اساس مدل مخفی مارکوف

Authors

  • علی منصوری گروه علم اطلاعات و دانش شناسی، دانشگاه اصفهان
Abstract:

هدف: شناسایی چگونگی تشخیص چرخۀ حیات فناوری در حوزۀ آندوسکوپی با استفاده از داده‏های پروانه‏های ثبت اختراع و مدل مخفی مارکوف. روش/رویکرد پژوهش: این پژوهش از نظر هدف کاربردی و از نظر نوع اکتشافی است. جامعه این پژوهش را همۀ پروانه‏های ثبت اختراع در حوزۀ آندوسکوپی که از سال 1976 تا 2015 در پایگاه پروانه‏های ثبت اختراع آمریکا منتشر شده‏اند، تشکیل می‏دهد که  با استفاده از نرم‏افزارهای Uspto1 و Ravar Premap استخراج شدند. تعداد این پروانه‏های ثبت اختراع 4915 عنوان بود که با استفاده از مدل آماری پنهان مارکوف بررسی گردید. یافته‏ ها: یافته‏های پژوهش حاضر نشان داد فناوری آندوسکوپی در مرحلۀ اشباع چرخۀ حیات فناوری خود قرار دارد و میزان نوآوری‏های این حوزه نسبت به دیگر حوزه‏ها به‏دلیل اشباع‏شدن بازار کمتر است. نتیجه‏ گیری: انتقال فناوری از یک مرحله به مرحلۀ دیگر چرخۀ حیات فناوری بر اساس تغییر قابل توجه میانگین‏های شاخص‏های پروانه‏های ثبت اختراع قابل تشخیص است و با استفاده از مدل مخفی مارکوف، بررسی احتمال اینکه فناوری در یک مرحلۀ خاص از چرخۀ حیات فناوری خود است نیز امکان‏پذیر است. ضمناً ادغام شاخص‏های پروانه‏های ثبت اختراع در مدل مخفی مارکوف دیدگاه جامع و متوازنی از چرخۀ حیات فناوری را فراهم و تصمیم‏گیری بنگاه‏ها را با توجه به مراحل چرخه حیات فناوری تسهیل می‏کند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

سیستم تشخیص نفوذ مبتنی بر مدل فازی مخفی مارکوف

در این پژوهش کوشش شده است سیستم تشخیص نفوذی برای ترافیک انتقالی شبکه ارائه شود که با داشتن نرخ تشخیص حمله ی بالا، به نرخ مثبت کاذب پایینی دست یابد. این سیستم با نظارت بر ترافیک شبکه، به تشخیص ناهنجاری¬ها می پردازد. بدین منظور ویژگی¬های استخراج شده از یک ترافیک شبکه به وسیله ی تعدادی hmm، تحت عنوان یک گروه دسته بندی کننده، مدل سازی می شود. سپس با ادغام خروجی های حاصل از hmm های درون یک گروه، مقد...

سیستم تشخیص نفوذ مبتنی بر مدل مخفی مارکوف

یکی از اساسی¬ترین معیارهای یک سیستم تشخیص نفوذ ایده آل، به دست آوردن نرخ مثبت کاذب پایین و نرخ تشخیص بالا است. سیستم¬های تشخیص نفوذ مبتنی بر امضا در تشخیص حملات جدید ناتوان می¬باشند و امروزه سیستم های مبتنی بر ناهنجاری استفاده می¬شوند.مهم¬ترین پارامتر در این سیستم ها نرخ مثبت کاذب است که هرچه قدر پایین باشد، سیستم در شناسایی حملات منعطف¬تر عمل می¬کند. هدف از ارائه این پژوهش، بهبود این معیارها ت...

تشخیص نفوذ شبکه با استفاده از رویکرد ترکیبی مدل مخفی مارکوف و یادگیری ماشین مفرط

با رشد فناوری اطلاعات، امنیت شبکه به‌عنوان یکی از مباحث چالش‌برانگیز مطرح است. تکنیک‌های تشخیص نفوذ مبتنی بر ناهنجاری یک فناوری ارزشمند برای حفاظت از شبکه‌ها در برابر فعالیت‌های مخرب است. در این مقاله رویکردی جدید مبتنی بر مدل مخفی مارکوف (HMM) و ماشین یادگیری مفرط (ELM) جهت تشخیص نفوذ ارائه شده است. در مدل پیشنهادی، داده‌هایی که از ترافیک شبکه جمع‌آوری شده‌اند، ابتدا پیش‌پردازش می‌شوند. سپس دن...

full text

بازشناسی برخط زیر-کلمات فارسی بر اساس ویژگی‌های کدهای زنجیره‌ای فریمن با استفاده از ‌ مدل مخفی مارکوف

در این مقاله سعی بر شناسایی برخط زیر-کلمات فارسی با استفاده از کدهای زنجیره‌ای فریمن و مدل مخفی مارکوف شده است. کدهای زنجیره‌ای با استفاده از جهت شکستگی‌ها، ضمن حفظ جهت حرکت قلم، حجم داده‌ها را کاهش می‌دهد. از این‌رو می‌تواند به عنوان یک روش مؤثر در شناسایی برخط زیر-کلمات بکار گرفته شود. پس از شکستن زیر-کلمه به بخش‌های تشکیل‌دهنده (بدنه اصلی و ریزحرکات)، با استفاده از کدهای زنجیره‌ای فریمن، هر ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 20  issue شماره 3(پیاپی 79)

pages  95- 121

publication date 2017-09-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023